Can you find some patterns relating the denominator of a fraction to the number of repeating digits in its decimal?
Don and these students were involved in looking at the decimals for certain fractions: MaggieP, KatieR, & VittoriaD. The decimals were obtained using Mathematica'. Maggie P, did the most thinking about the data below.
denominator
= 789, number of repeating digits =none. Not enough digits.
____________________________________________________________________________________
0.1077313054499366286438529784537389100126742712294043092522179974651457541191381495
564005069708491761723700887198986058301647655259822560202788339670468948035487959442
332065906210392902408111533586818757921419518377693282636248415716096324461343472750
316856780735107731305449936628643852978453738910012674271229404309252217997465145754
119138149556400506970849176172370088719898605830164765525982256020278833967046894803
548795944233206590621039290240811153358681875792141951837769328263624841571609632446
134347275031685678073510773130544993662864385297845373891001267427122940430925221799
746514575411913814955640050697084917617237008871989860583016476552598225602027883396
704689480354879594423320659062103929024081115335868187579214195183776932826362484157
160963244613434727503168567807351077313054499366286438529784537389100126742712294043
092522179974651457541191381495564005069708491761723700887198986058301647655259822560
202788339670468948035487959442332065906210392902408111533586818757921419518378
denominator
= 789 = 3x263, number of repeating digits = 262
_________________________________________________________________________________
N[55/34,100]
1.61764705882352941176470588235294117647058823529411764705882352941176470588235294
1176470588235294118
denominator
= 34=2x17, number of repeating digits=16
________________________________________________________________________________
0.02941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941
denominator
= 34=2x17, number of repeating digits=16
_________________________________________________________________________________
0.588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588
denominator
= 34=2x17, number of repeating digits=16
0.911764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529412
denominator
= 34=2x17, number of repeating digits=16
0.827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160494
denominator
= 81=9x9, number of repeating digits=9
0.1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
denominator
= 81, fraction reduces to 1/9; number of repeating digits=1
0.1234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901
denominator
= 81=9x9, number of repeating digits=9 (curious 9 digits!)
0.1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099
denominator
= 91=13x7, number of repeating digits=6
0.1208791208791208791208791208791208791208791208791208791208791208791208791208791208791208791208791209
denominator
= 91=13x7, number of repeating digits=6
0.1318681318681318681318681318681318681318681318681318681318681318681318681318681318681318681318681319
denominator
= 91=13x7, number of repeating digits=6
0.1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429
denominator
= 91=13x7, fraction reduces to 1/7; number of repeating digits=6
0.02197802197802197802197802197802197802197802197802197802197802197802197802197802197802197802197802198
denominator
= 91=13x7, number of repeating digits=6
0.1571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571
denominator
= 70=2x5x7, number of repeating digits=6
0.1086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652174
denominator
= 92=2x2x23, fraction reduces to 5/(2x23); number of repeating digits=22
0.1195652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391
denominator
= 92=2x2x23, number of repeating digits=22
1.184782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260870
denominator
= 92=2x2x23, number of repeating digits=22
0.03030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030
denominator
= 33=11x 3, (1/33=3/99=.0303'); number of repeating digits=2
0.02127659574468085106382978723404255319148936170212765957446808510638297872340425531914893617021276596
denominator
= 47 (prime); number of repeating digits=46
0.1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429
denominator
= 7 (prime); number of repeating digits=6
0.0714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714285714
denominator
= 14=2x 7; number of repeating digits=6
0.0833333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
denominator
= 12=3x2x2; number of repeating digits=1
0.2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
denominator
= 9=3x3; number of repeating digits=1
0.1515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515
denominator
= 99=11x3x3; number of repeating digits=2
0.1371371371371371371371371371371371371371371371371371371371371371371371371371371371371371371371371371
denominator
= 999=37x3x3x3; number of repeating digits=3
0.01960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901961
denominator
= 51=3x17; number of repeating digits=16
1.28150572999215152863129496383802941255388466455500447077578326779153292018531315245212851384894077x10
'7
What's
your guess on this one?
Maggie's
remarks:
+++++++++++++++++++++++++++++++++=
To
other discoveries
To download
Don's materials
Mathman home