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"Trying to divide six cookies fairly among seven people? Third-grader Brad had the
right idea: cut each one in half, share out as many as you can; again halve the pieces
not shared until there are pieces enough to share, and continue. He quit at
sixteenths, amidst lots of crumbs. But he could see that everyone got 1/2 + 1/4 +
0/8 + 1/16 + 1/32 + 0/64 +...of a cookie. The sum is not hard to express in terms of
more familiar series, once you notice that the missing portion of unity is itself a
geometric series for 1/ (1- (1/8)). Iteration is more powerful and more intuitive than
dividing a round cookie into seven equal parts.

This spiral-bound book the size of your hand reports with infectious enthusiasm the
work of many beginners in one fine teacher's class over the decades, some of them
highly gifted kids and some of them grown-ups with no particular mathematical bent.
All were on their way to an understanding of slope and integral, natural logarithm and
exponential. En route a good many famous problems were encountered, among
them the proof of the snaillike divergence of the harmonic series (its first million
terms add up to about 14.4, a sum given here to a dozen decimals), the Fibonacci
equence in pineapples and that glorious relation among, e, i, pi, 0 and 1.
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PREFACE

This is a book of problems for you to work on and think about. Archimedes,
Newton, Euler, my students and | have worked on them also—they are
important. Get out a pencil, some paper and a calculator. Expect chaos and
confusion, then you'll be on your way. To supplement this book, you probably
want to get Bob Davis’ two books for the emphasis on algebra and graphing
and Sawyer’s book “What is Calculus About?”. A bibliography is included
later.

I was teaching a class of teachers at Webster College in the 60's; one day
Judy Silver, a first-grade teacher, figured out the relationship between the
derivative and the integral. | had tears come to my eyes, | was so excited. |
said, why couldn’t | have learned math in the way that | was teaching it now!
That's why | want to share this book with young people (and their parents and
teachers), so they can get an early start thinking about these ideas, and not
have to memorize a lot of formulas and notations without much understanding,
as | did in my mathematics courses.



“In his first paper on the Calculus (1669), Newton proudly introduced the use
of infinite series to expedite the processes of the calculus .

As Newton, Leibnitz, the several Bernoullis, Euler, d’Alembert, Lagrange, and
other 18th-century men struggled with the strange problem of infinite series
and employed them in analysis, they perpetuated all sorts of blunders, made
false proofs, and drew incorrect conclusions; they even gave arguments that
now with hindsight we are obliged to call ludicrous.”

From Mathematics: The Loss of Certainty by Morris Kline. Copyright
©1980 by Morris Kline. Reprinted by permission of Oxford University
Press, Inc.

If you have questions, discoveries to share, suggestions for changes, | would
welcome hearing from you.

Start anywhere and ENJOY. But stay with it!
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A A\?2 A\3 A\?
HAPTER 1: - = = = a
c ER 1:7 Year-Olds Do (B) + (B) + <B> + (B) +

Add up the fractions below:

1\2 1\3 1\4
+1i5) tilz) ti5) *--- i
(2) (2) (2) or without exponents,
1

+ 1 + = l + 1 + ... (forever!)
4 8 16 32 '

]
2
1
2

1
4

What happens if we add these up a

little at a time? You might draw 1
a picture to show their sum. 2
1_1
2 2
1+1——’78ince1—g 1+1_g+1—§
2 4 2 42 4 4 4 4
1 1.1 7 %
2
Syl L2 -old!
2+4+8 il (by Chris, a 6-year-old!)
1 + 1 + 1 + 1 ? (What do you think Chris wrote for this one?!—he
> 278" 16 ° y -

.1,
wrote the answer in 78 also!)



1+1+1+l+l—7
2 4 8 16 32 ’

So the sequence of partial sums look like this:
13715 3

Can you predict the next one? Do 4 more. What patterns do you see? Is the
sum getting bigger or smaller? Is g bigger or smaller than %? Is the number

we're adding each time getting bigger or smaller? Is there a number the sum
is getting closer to? Will it ever get as big as 5? Is it getting closer to 57 Is it
getting closer to 27 Is there a smallest number that's too big?

These sums must be increasing, because we are adding a positive number
each time. The number we're adding each time is getting smaller though. As
Steve said, the sums keep getting half way to one. Others have said, the sum
never gets bigger than 1 because the top number is always one less than the
bottom number. Someone else said, the partial sums are always 1 of



the fractions lessthan 1. 1 = 6—4, and & - L = & The denominators are
64 64 64 64
powers of 2, 22=4, 23=8, etc., S0 one way to write the nth term of this

sequence or the sum of n terms of the series is
1 n
1 — —
&)

111 1\"
The sequence >7 8 (§> ... decreases and never goes below 0. So

1—(a number getting close to 0) will get closer to 1.
Another way to say it is, since the top number is 1 less than the bottom
number
2 — 1
2n
which, when we divide, we get the same answer as above. In either case, as n

gets bigger and bigger the sum gets closer and closer to 1 and does not get
bigger than 1. We'll tentatively say it equals 1.




Two ways of showing this series, geometrically, and graphically are drawn
below:

Method 1: The whole z l " 1
thing is a square of ! '
area 1.
1

Method 2: A graph of the number sw:‘_t
of terms added vs. their sum. ot

L1

2

’ 3i§5e
#of terms



It's interesting to look at what Chris did for a moment; he was six years old at
this time. He has been with me once a week, for 45 minutes, for about 5
sessions. He drew a 16 x 16 square on graph paper, then cut it into pieces of

15, 3—1, etc., each piece a different color, to about 201?6‘ He enjoyed trying to make
the pieces smaller and smaller and he had already written the sum

L S A L
2 478 16 32 64

IR R B IS IS B3
128 256 512 1024 2048 4096 ~ 9070’

without any help from me. This last part was incorrect, for he was adding tops
and bottoms, but he couldn’t communicate why he did that. Then, not to my
surprise, he wrote the name of each of these pieces as quarters and added
these up. He got

LI E I
4 8 16 32 64 128
1 1 1 3

+
_+_. —_— =
256 ' 512 | 1024 2046
1 2 1 1 1 1 1 1 1 1

H - == - == - = —of - — = - of - etc.!

eknewthat2 4and4 4and8 2of4and16 4o4etc

That was neat. He had trouble that day trying to explain to his Mom, who had
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come to pick him up, and to me, why he had 563413 as the answer and also

incorrect. | had faith that he was thinking about this in a way that was very
good, but he just didn't know how to write it. This is important to remember
when working with children learning new things. He was thinking about

6 + 2 = 3 and | think it had to do with g = g. He also knew and wrote that

1
2

+

©
INFS
o~

At one point his Mom said to me, “l don’t see how this is related to what Chris
is doing in school”. Now the reason Chris was coming to The Math Program (a
private program for which Chris’ Mom and Dad pay us to work with him after
school) was the fact that he was bored in school. My response was “How is
Chris doing in school?” “Fine, he is still adding 2 and 3", she said. Then |
explained that Chris’ understanding of fractions was well beyond most 7th-
graders | have worked with. We are dealing with infinite processes, which is
the basis of the calculus. Besides, in doing all this, he is adding big numbers,



dividing, learning about equivalent fractions and complex fractions, all of which
the schools expect him to do anyway, but of course much later. | also told his
Mom that we would be doing linear graphs soon (see chapter 6) and to keep
asking and talking to me about her concerns. | need to understand her
concerns in order to strengthen and support my belief in what | am doing as a
teacher. I'm very pleased that Jerry and | have found a way to work with
people so as to allow them to stretch their minds and enjoy mathematics. For
those students who have difficulty we can use lots of different approaches to

help them. And yesterday Chris said that all the quarters add up to % =1or
close to it!

Chris does other mathematical things also. | shouldn’t leave you with the
impression that | have been forcing him to work only on this problem. He has
made a set of Soma cubes (seven pieces of wood made from centimeter
cubes and invented by Peter Hein, Parker Bros.) and has builta 3 x 3 cube

with them. There are many other things for him to work with; he can’t get
bored here.



wow i i sum: (1) + (1) + (1) + (3 + .
v () + (&) + (@) + @)+
s (g) < &)+ (6) + )

2 2\?2 2\ 2\*
dthe bigleap: (3) + () + (3) + (5) + -
oot () (0 + (3 +
Now you really have to look at what you have so far. Can you guess this one?
3+ (&) + ()
=)+ (=) + (=) +...
17 17 17

2 3
What about <§> + (§> + (§> +...7?
2 2 2

Use a calculator at any time. Look for a pattern. Write a program on a
calculator or computer to add up the terms. Can you generalize to

FR .

B B B

STOP HERE. TEST YOUR RESULTS. THE ANSWERS ARE ON THE NEXT
PAGE.



Let’s look at the sums of the infinite series we have so far:

2 3
(%) + (%) + e) + ... seems to not go above 1 and gets closer to 1, we

will tentatively say it equals 1.

GG G ez

FRNCR N

66 G -3

GG <€ 3

( >+< ) +(1—87>3+"‘:g:178—8
v (3 () + () - 5
E\%B ( > () . diverges, doesn't work. These series work only if



15.999999 ... =1?2In_—___ Mo, a 7th grade class, in a small building,
had a great discussion about this. Students came in each day for a week with
arguments that it is or is not. One day the whole class, spontaneously, made
signs to put around their necks. They were going to march around the school,
half the signs saying .999 . . . = 1, the other half saying it was not equal to 1.
That was a most exciting and unforgettable day; marching around the school
about a math problem! There was a sad ending to this story, however. The
principal, upon seeing this excitement, said we couldn’t do this, it would upset
the school!
We canwrite, 9999 ... = > + > 4+ 2 4 - 9-(l +

10 100 1000 10 100
101% + ... ) by factoring 9 from each term. Writing the sum with powers of

1 1 1

2 3
ten, 9 - [(—) + (—) + (—) + ... } This has an infinite series in it which
10 10 10

we know how to deal with now, and equals 9 - [10 1_ 1] =9- (%) =1.So

1999999999 . . . = 1. Can you change these infinite repeating decimals to
fractions: a) .18181818 . . ., b) .135135135 . . . and c¢) .037373737 . . .

10



CHAPTER 2: Brad’s: Share 6 Cookies With 7 People.

If each person is to get an equal share, how many cookies does each person
get? Use 3 X 5 cards as cookies (not circles) and use scissors to solve this
problem yourself before going on.

The nice thing about this is that each person can come up with a different way
to solve it, and each can be correct.

Be careful about the size pieces you have as you go along. You have to keep
asking, how many of this size piece makes a whole cookie? Then you can
name each piece. For example, if 16 of the pieces make a whole cookie, then

. o1 .
each piece is % of a cookie.

11



Brad, who had just finished 2nd grade, solved it this way: his rule was, I'll cut
each cookie in half, share them if | can, if not, cut these pieces in half until |
can share again, and continue to do that.

Here we go (you might want to do this with your 3 x 5 cards):
He couldn’t share 6 cookies with 7 people, so he cut each in half, obtaining 12
half-pieces.

He shared these pieces; each person got ; of a cookie. He had 5 halves left,
which he couldn’t share with 7 people.

12



He now had 10 quarters

He cut these 5 pieces in half. H

He shared these with the 7 people.
Each person now had % + % of

a cookie. There were 3 quarter-pieces
left over, which he couldn’t share

with the 7 people.

He cut these 3 quarter-pieces in half,
which resulted in his having 6 eighth-pieces.
But this was not enough to share with the 7 people.

i
1

. 1 3
Now each person still had % +og H

He cut the 6 eighth-pieces in half, il
obtaining 12 sixteenth-pieces.
Each person then shared one of these.

13



1 1 1
n -+ - + — of
Now each person had 3 yRRERT

a cookie and he said he could go on
(and get lots of crumbs).

There is a pattern; each person gets:
i 1 0 1 1 0

L2324 = 4 — + = +...ofacookie!
2+4+8+16 32 64 Ol a COOKIe

And we have an infinite series!

Brad did something | had never seen before. Looking at things in a new way,
seeing new connections to other things, that is a powerful idea. You're not just
learning one thing, but learning how to learn new things. Since this happening,
other ways of equal interest were invented by other people; Brad's way just
happened to end up as an infinite series.

Can you find a simple fraction for Brad's infinite series? It looks very much like
the first series we talked about:

14



1 1 1 1 1 1

-4+ -4+ -4 —+—+ — + ... = 1.Brad’s series is this one but we have
2 4 8 16 32 64 es

1 1 1 1

2 3
totakeout-+ —+—+4..or—+(—> +(1> + ...SoBrad’s
64 512 8 8 8

2 3
series = 1 — [(%) + (%) + (:—3) + ] From our earlier work, the

1

infinite series in the brackets = 17 Bradssenes =1- 1; = g.
The following are other solutions to Brad’s problem, given each share, as
1

done by a variety of people of different ages: la + 3 ‘11 + % by Leslie, age

10;E + g + E‘ by Cmdy;‘—1 + 1 pica + Zofapica, by an adult typesetter;

3 7
school principal. Most people of say 6th grade and up, however, said they got

2 4 <3> . (%) by a principal of a middle school;-z- + 4l2, by an elementary

g by cutting the 6 cookies into 7 pieces each, then each person gets % 6 times

or g. For young people, cutting into 7 pieces is not a normal thing, and is
difficult; cutting a thing in half, into 2 pieces, is easy and familiar.

15



An interesting offshoot of Brad’'s method is that his series can be written as an

infinite repeating bimal .11011011 . . . equal to g (or in binary :1—?), in which the

1, 1, 1, . L
places are 5878 3 s and the numerators are those in the series, instead of

1, 1, 1,
— , T S’ —
10" 100~ 1000
decimal is .857142857142 . . .

s etc., in our regular decimal system. g as an infinite repeating

It's interesting to look at these numbers for patterns—I just saw the 110 in the
fraction % and 110 is repeated in the bimal .110110 . . . And S-S = 434343 . ..

in decimal.

16



CHAPTER 3: lan’s Proof: Infinity = —1

At age 7 lan Robertson was generalizing the area of a triangle, realizing his
formula would work for all triangles. That to me had the flavor of an infinite
number of things. When he was 11 years old, in January 1982, he came back
from winter vacation with The Mathematics Calendar for 1982 (see
bibliography). He had solved the infinite problem:

\/x+\/x+\/x+\/x+... =3

He argued, what's under the biggest square root is 9, because V9 = 3.He
sets what’s under the radical then, equal to 9.

17



So

x+Vx+ Vxtvxr... =9

|
But this much is the original problem and equals 3

Sox +3=9andx = 6.

lan generalized these infinite square roots in September of '82. He worked on
infinite continued fractions and starting in January 1982 he was reading
Sawyer's “What Is Calculus About”.

lan was clearly thinking about derivatives, and by November of '82 did
ﬁ’% for f(x) = x2. In 83 he sees he can work derivatives backwards

and forwards (see chapter 14).

18



In November of 1983 lan wrote down how he figured out the sum of the infinite
seres1 +a+a+a+a+... = 1—1—; the same one Euler had done
in 1754-55. It went simply like this:

1+a+a+a+a*+... =C hefactored out a
1+al+a+a+a+...)=C
1+ a(t +a(l +a(l +...)) = C similar to infinite \/"~

/

thisis C

1+ aC = C subtract C and add —1

aC - C="1 factor out C

19



Cla—-1)="1
-1
a-1

divide by a — 1

= ﬁ by muiltiplying top and bottom by ~1.

Sol+a+a+ ad+ a*+..

1-a
Now he argued,

ifa=2thent +2 +4 +8+ 16 + ... =11j= ~1, and since
1+2+4+8+ 16 + ...goes toinfinity,

o = -1

20



CHAPTER 4: The Snowflake Curve—its Area and Perimeter

To build the snowflake curve you start with an equilateral triangle. The
succeeding figures are made by dividing each side into 3 equal parts then
adding a triangular piece on each of the center pieces of the sides. The first

four are shown below:

A, YAVYaVaVaVav4 AL
b ATASATAIATYY S e LRI KL MQQMW
e G e
p YA VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
A9 STATSS, W% 2 VAT TAVAVAVAY, TAVaV
YAY .JAVAVAVAVAY VaVAVAVAVAVAVAVAY OATATAAY AANA
Y JATAVATAVAVAYs VAVAY 7 o X
£ 3 5 AYAVA . N ¥a VAY
fiiX e ey
y S Ya VAVAY
a2 YAVAYAYAYa YAV X /\/\/\/\/\/\W
Y JAVAY YAVAVAY. YAVAVAY N G
YAY 3 7 A
JAVAVAVAVAYa VaVAVA 45 Y
YAVAVAVAY. VAVAVAY -
YAVAVAVAVAVAVAVAVAVAVAV, VAVAY s Ay 3
TATAY S
o YAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA VaVAVAVaV
e 2 RN o
\ %
> a0y
. YA "AVAYAVAVAVAY VAVAVAVAVAVAY
YAYa TATAVAVAVAY TAVaY
Y VAVAVAVAY JAVAVAVAY
Y "AVAVAY JAYAVA
D "AVAY JAVAVAVAVAVAVAYA
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KYAYAVAYAVAVAVAVAYAVAVAVAVA
ANy AYAYAYAYAYAYAYAYAVAVAYAVAY
AL VAYAY VAVAVAVAVAY
L ) YaAYAYAY
VAVAVANG Y
vava YA AVAVA

5 YAVAVAYA Va!
YAy, YAYAYAVAVAVAVAVAVAVA
AVAVAGN (3,9 ¢ FAYAS
vaos AVAVAY
e R A LTI
Bysy SATAYAYAVAYAY
(VAVAVAVAVA AVAVANG &
AVAVAVAVAVAVAVAVAVAVAVAVAVAVA YAUAVARVAVAY .YAVAVAYAVAYAVAVAVAVAVAVAVAVAVAVA
VAVAVAVAVAVAVAVAVAY KVAVAVA "AVAE (3 AVAYAYAYAVAYAVAVAYA
[VAVAY AVAVAYAVAVAVAVAVAVAVA YAVAVAVAV X SVAVAVAVEO VA VB JAVAVAYAY
FAVAVavavava VAVAY avavava YAVAYAVAYAVAVAVA' AYAYAs VAYAY a4
LYAVAVAVAVAVAVAY VAVAVAY, YAVAVAVA " AVAVA U Va¥
CANAVAVATES oy AV AV AY
VAVAVAUAUY] T V)
VAVAYAVAVAVAVAVAVAVAVAVA AVAVAVAVAVA BYAY2 NN
AVAVA YAVAVAVAV] . \YAYAYAYAYAYAY
FAYAVAYA S V4YaYAVAYAYAVAAVAYA
AVAVAVAVAVAVAVAVAVAVAVAVAVAYAY 3" AVAVAVAVAVAYAVAYAS BAYAVAVAYAY
VAVAVAVAVAVAVAVAVAV YAYs* AVAVAVAVAYAVA SUAXFAVAYAVAYAVAVAVAVAVAYAYAVAVAYA  AVAVAVAVAVAVAVAVAVAVAY,
|AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA VAYAYAVANAVANAT XY £xaV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV AR A

The first problem is to find the area of each figure and then tell what happens
to the area if this process goes on forever.
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| recommend calling the area of the first figure one unit of area. You might
want to work on this yourself before reading on.

In finding the area of the snowflake we get the following sequence of partial
sums (call the area of the first figure one):
1

3 . y .
1+ s notice we’re not writing one number for the answer; you

want an answer to help see a pattern. This is important. In elementary schools
the emphasis is usually only on getting the immediate answer rather than on
patterns that will get any and all answers, a generalization. The answer here is
better not left as a number, but as a sum, then finding a pattern for the infinite
series:

23



1 + § + B ¢ ﬁ
9 81 729
Now comes a tricky part, trying to figure how to write these fractions to see a
pattern; one way which begins to work is:
40 41 42
1 +3‘§+3'§+3"§5+
Now we'd like to get an infinite series to look like one in Chapter 1, which we

can figure out. Forget the 1 for a moment. Factor out 3 from each term after

the 1.
0 41 2
1+3.(4— 4 )

This is still hard because the exponents of 4 and 9 are not the same. To fix
this, multiply each term inside the parentheses by 4 and divide by 4 on the
outside of the parentheses. This doesn’t change things because we're

multiplying by 1 as 3. We end up with the same exponents for 4 and 9:

24



3[4 # &
1+—'§;+9—2+§+...

oo - . 4 4
The series in the brackets is like one of our earlier ones and goes to 7%=

Then the area of the snowflake convergesto 1 + - - g =1

AW
alw

It's fascinating to see 8- and 9-year-olds do these things!

Now see if you can find the perimeter. Call the perimeter of the first one 1 if
you like, as | did. That's not essential.

STOP HERE AND TRY IT. LOOK AT THE DIAGRAMS ABOVE.

25



Finding the perimeter goes like this:

1

1
1+§
T
3 27
1 1+.1_2+§
3 27 81

again we have the problem of how to write these
terms; it takes time and some mistakes before it becomes clear. We'll write it
this way:

1+ 3 + ? 3 ..or
20 22 24
1+ 3 + 3 + 3 + ... We're getting closer.

Remember, there are different ways to do this.
How about this:

26



1+ aal + a + & + ... nowwecanfactorout1
3 ¥ & 3
R R - R
3\ 3 &
ez |G G G ]
3 L\3 3 3

Remember when we did the original ones and found they go to a number if
A <B. Inthis case A > B, 4 > 3 and g is bigger than 1, so it keeps getting

bigger and bigger and we say it is divergent.

So here is this snowflake curve, the area is a convergent series and goes to
12, while its perimeter is a divergent series and goes to infinity. Very
interesting.

This curve is sometimes called one of the “pathological” curves, compared to

simple straight lines, parabolas, circles, ellipses, hyperbolas and sine waves,
which Kasner and Newman describe as “healthy and normal”. In fact

27



today the snowflake curve, one of the Koch curves, is in the realm of Fractal
Geometry and part of chaos theory. Mandelbrot, the leading force in this new
way of looking at geometry, talks about coastlines, turbulence, clouds,
galaxies and tries to describe the irregular and fragmented in Nature, with

applications in economics as well as many other fields. Imbedded in his work
is the idea of self-similarity.

28



CHAPTER 5: The Harmonic Series

Take a look at this infinite series:
1+l+1 1+—+...
2 3 4 5 6

which is called the harmonic series. See what you can find out about it.

1
+

The harmonic series looks innocent enough. My students started to
use their calculators and even wrote computer programs on the
FX7000G to look at the sums. One day some youngsters must have
gotten the sum of the first 10,000 terms, and it didn't reach 10! They
were ready to say the infinite sum went to 10 as the limit. Karl T.
Cooper wrote from Providence, R.1., that using his computer, he found
the sum of the first 1,000,000 terms is 13.3573617935, not
14.392726788474, as | incorrectly reported in earlier printings. He
showed this graphically as well. This series tends to infinity, diverges,
but very slowly. lt's wonderful to hear from people who are really
reading my books. No matter how many times I've checked, there are
still mistakes. It's nice to know I'm not perfect!

29



This series tends to infinity, diverges, but very slowly.

In about 1350 Oresme proved this series to be divergent. The proof goes like
this: we’ll compare the harmonic series

tothisseriesl+1+1+1+1
2 2 2 2 277

which gets bigger and bigger and is divergent. We'll show that the terms of the
harmonic series, looked at in a certain way, will be bigger than the terms of

. . 1 . . . 1
this series 5+ % + ... and therefore is divergent also. The first terms, > are

11

the same. Since + + 1 = 1
4 4 2

1 1
,and: > 1 thenl + 1> 1 The second 2 terms
3 4 3 472

of the harmonic series add up to a number bigger than %

30



> - and 1; > % So the sum of the

1

1
8
1
5 7

1
6
next 4 terms of the harmonic series < é + - + %) is bigger than % also.

The next 8 terms will be bigger than 15 and so on. Since this is an infinite sum,

we can go on and on and the harmonic series will be bigger than the series
1

1 . .
sttt and is therefore divergent also.
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CHAPTER 6: On Thin Spaghetti and Nocturnal Animals

A group of teachers at a National Association of Independent Schools
workshop in 1975, spent time on guessing functions and graphing functions
and came out with some interesting results, including an infinite sequence.

It's important enough to digress a moment now to do the guess my rule or
guessing functions: I'm thinking of a machine or rule. You give me a number
(input), | put your number in my machine and give you a number back
(output). | always do the same thing to

the number you give me. Your

job is to figure out how my rule input (x) l output (y)
works. So if you give me 1, I tell

you 5; if you tell me 2, | tell you ; ?
7, and so on. We'll put the numbers 3 9
in a table like that at the right. 4 11
Can you guess my rule? 10 23
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There are many ways to say it. If your way gets the same numbers, that's fine.
Some people would say | added your the number twice then add 3. Others
might say | doubled your number then count up 3. Let’s write the rule different
ways using the x and y. One way to write itis x + x + 3 = y, another is

2-x + 3 = y. Notice, we're doing arithmetic and algebra together, and for
young people this is easy and fun.

Now you make up a rule for me. Use a 3 x 5 card, put your table of numbers
and name on one side and your written rule on the other side. Here are some
rules you can try to figure out:

1.

X y 2. X y 3. X y 4. x y
0 -3 0 2 0 0 0 0
1 0 1 7 1 1 1 1
2 3 2 12 2 3 2 4
3 6 3 17 3 6 3 9
4 9 4 | 22 4 |10 4 | 16
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X y 6. X y 7. X y 8. X y

1 1 0 1 2 |180 212 | 100
2 5 1 2 3 | 120 122 | 50
3 | 14 2 4 4 | 90 77| 25
4 | 30 3 8 5 | 72 68 | 20
5 | 55 4 116 6 | 60 21 0

The other idea which is very important is the graphing of equations and these
functions when we play guess my rule. | start this with 5-year-olds right away
because it involves simple arithmetic, simple algebra and simple geometry, all
at the same time. With the 5’s | start with an equation likex +y = 7.

This will give a picture of the pairs of numbers that add to 7. Each pair of
numbers corresponds to a point on the graph, where the lines cross.
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If we graph the pairs of numbers fromtherule 2-x + 3 =y,

it looks like this:

2:x+3=y
X y
4
13 1 5
12 2 7
1" 3 9
© 4 |11

O - N U & 0o N~ O
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How is the graph on the left the same as/different from, 2 - x + 3 = y? Find
the equations for the following graphs:

e '
J g 1% N
| 17 Iy, 4B
] l Ls: q, h
7 3
4
12 —JL
Wt —+{ I+
..& 0
1 — R
18 o d |
_7 ? €
g 6O
15 | | g _
¥ 2 °
1 L3
- S g poy -
2 2z
t t
ol 23¢85 |74 ) 5 ¢ &
1
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Back to the teachers’ work. We looked at the problem: given a certain volume,
like 8 cubic centimeters of wood, find their surface or skin area. The
Cuisenaire rods we used are 1 x 1 x 1to 1 x 1 x 10 cm. We found the
following arrangements:

@ @ @ @ @ S.A.= 48 cm?

9T @ S.A.= 28 cm?
W S.A.= 34 cm?

S.A.= 24 cm?

S.A =28cm?
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We noticed that the smallest surface area, for a given volume, occurred when
we built a cube! This same idea occurs in spherical soap bubbles.

We looked at the Nautilus shell.
One of the teachers concluded
that the distance across each
chamber does not increase as
fast as the volume of each
chamber. Since that time,

various people have done studies
of the shell and how it grows,
which we will not include here.
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This led to a study of how lengths,
squares and cubes grow.

>
<

ROD |LENGTH
1

Lengths:

I

.l E

RULE. X = Y

>
—<

Squares:

LENGTH | AREA OF
OF SIDE {SQUARE

@ O

RULE. X 2. Y

folafulo|-
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Cubes

40

RULE: X 3=

>
<

LENGTH|VOLUME
OF EDGE |OF CUBE

o fo]s] -



We graphed this data:

o 6 8 L 9 ¢ » € 2

|

yibua poy
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One of the teachers suggested looking at the surface area of cubes, not the
single rods, because the single rods have the same cross section of 1 cm2.
From the data below, the surface area goes up as the square of the length.

Length( /) i‘:'e':" Surfoce Area = _[zx [3

~
b
x
)

w
w
~
*
o

a
Y
N
»
o
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The volume of the cubes goes up as the cube of the length as seen from the

data on the cubes.
We then looked at the surface area to volume ratio of the rods:

Surtoce Area
Length Surfoce Area Volume olome
' 6 1 t:6
2 10 2 P=s
3 14 3 %= a67
4 8 4 Qa5
s 2 s 2. 44
6 26 6 %433
7 30 4 2428
8 34 8 3= a2
9 38 ) 2422
0 a2 10 2: 42
[[oo T 02 [ 00 ] 32 - 402 ]
[[ro0o T 002 [ ioco ] To0s * 4002 ]
: : i f
ax(Je+2 _4x0d 2 2
a 410+ 2 —_——— st A
L o O e o'oit'o
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For the % ratio we get the infinite sequence

6,5,4.67,4.5,4.4,433,4.28,4.25,422, ...
which decreases, gets closer and closer to 4 and never gets below 4. The limit
of this sequence is 4.

If the white rod (1 x 1 x 1) is amouse, and the orange rod (1 X 1 x 10) a
human, the mouse has a greater surface area to volume ratio. The skin acts to
rid the body of perspiration and the mass (proportional to the volume) is the
measure of heat production. If the mouse ran around during a sunny day, it
would lead to “excessive transpiration”. That's why rodents are nocturnal
animals. A visitor came in on the discussion to say “that's why mice eat more
for their weight than elephants and why my sons like thin spaghetti because
there is more surface area to be surrounded by sauce than thick spaghetti!”
And why we grate cheese before putting it on the spaghetti.
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Try to guess a rule for each of these investigations and graph your data:

1.

n

—_
N=20 000N W

How many squares can you make ona 4 x 4 array of dots? ina 5 x 5?
ina20 x 207 (Vertices at dots).

. For six equally spaced dots on a circle, how many straight line segments

connect these points?

. # of diagonals of a polygon vs. the number of sides.

. The sum of the interior angles of a polygon vs. the number of sides.

. The interior angle of a polygon vs. the number of sides

. The central angle of regular polygon vs. the number of sides.

- Rectangles with a constant perimeter of 20; length vs. width. | See

. Rectangles with a constant perimeter of 20; length vs. area. { Chapter 14
. Rectangles with a constant area of 36; length vs. width.

. Rectangles with a constant area of 36; length vs. perimeter.

. Side of a square vs. perimeter

. Side of a square vs. area.
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. Edge of a cube vs. surface area.

. Edge of cube vs. volume.

. Celsius vs. Fahrenheit temperatures.

. Weight vs. stretch of a spring.

. Height of an object vs. the length of its shadow.

. Weight vs. value of the same coins.

. # of straight lines vs. maximum # of intersections.

. Weight vs. volume of various size pieces of the same solid.
. # of wheel turns vs. # of pedal turns on a bicycle.

. Distance the wheel moves vs. # of pedal turns on a bicycle.
. # of teeth on a gear vs. its diameter.

. Perimeter vs. diameter of various circular objects.

. Tower puzzle: # discs vs. minimum # of moves.

. Shuttle puzzle: # of pairs of pegs vs. # of moves.

. Angle of sun vs. day.

. # of hours of sunlight vs. day

. Height of ball vs. height of bounce.

. # of Kwh vs. cost of electricity.
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. 0Z.vs. gm. on cans or boxes of food.

. # of miles travelled vs. # of gallons of gas consumed.

. # of gallons of gas purchased vs. total purchase price.

. Length of a pendulum (string with weight) vs. time for ten swings.

. Length of wire vs. its resistance.

. Height of a candle vs. time to burn.

. Length of the chord of a circle vs. the # of degrees in the smaller arc.
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CHAPTER 7: The Fibonacci Numbers, Pineapples,
Sunflowers and The Golden Mean

The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34 ... add the last two
numbers to get the next number. This is an infinite sequence that is divergent.
If we take the ratio of each number to the number before it we get another
infinite sequence:

[y}

PG
=1
N

, g g, ?, ... Looking at the mixed fractions and decimals, there are
many patterns:

% =1 = 1.00000 % =2 = 2.00000

3 _ 11_ = 1.50000 5 - 1g = 1.66666 ...
2 2 3 3

& - 12 -~ 1560000 T =17 = 162500

5 8 8

21 _ 18 _ 161538... 34 _ 113 161904...
13 13 21 21
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% 42 _ 161764 .. 8 _ 43 _ 161818...
34 34 55 55

144 55 _ 233 _ .89 _

=1 = 161797 ... 2812~ 161805
377 _ 4144 _ 461802 .. 519 _ 428 _ 161803...
233 233 377 377

What patterns do you see?

The numerators in the ratios are the original sequence. as are the
denominators but one behind. The mixed fractions act similarly. The decimals
form an alternating sequence, they increase then decrease then increase,
etc., but they are getting closer to some number like 1.61803 . . . This is an

N 1+\V6
irrational number

and is special, given the name The Golden Mean or
The Divine Proportion.
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Below is a graph that has been made by many young people, showing the
infinite sequence of ratios of Fibonacci numbers that we saw above.

|18}

S
—"’/
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The Spiral can be obtained from building squares onto rectangles, using the
Fibonacci numbers, as in the figure below:

e o

S S S . N

P

4/

- —-———-&<s—-—-—n~

N N S . .

The spiral is made up of arcs of circles whose centers are at the corners of the
squares.

51



The Fibonacci numbers are found in the leaf arrangement (phyllotaxis) of
various plants. Count the rows of the 2 sets of nearly hexagonal cells of a
pineapple as they whorl around it. The pineapples | bought had 8 and 13 rows,
both numbers being Fibonacci numbers. Coxeter says there is another set of
whorling cells of 5 rows; that took longer to find.

Many of us have counted
the leaves on the stem

of a sunflower plant as
they go around and up

to a leaf above a

previous one; this

number came out to be 8.
We've counted the number
of times the leaves
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whorl around the branch and is turned out to be 3. Both 3 and 8 are Fibonacci

numbers.

The golden angle (about 137.5°) was obtained by a group of teachers

examining the sunflower leaves, then finding fractions of 360° using alternate
Fibonacci number ratios:

1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377,610 . . .

1

2

2
5

13
34

34
89

x 360 = 180 degrees

X 360 = 144

X 360 = 138.46. ..
x 360 = 137.64...
X 360 = 137.52...
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21
55

55
144

X 360 = 120

x 360 = 135

x 360 = 137.14. ..
x 360 = 137.46 . ..
x 360 = 137.50



This gives us an alternating sequence whose limit is 137.50 . . . (irrational) and
can be written as (.618034 . . . )2 x 360 or ‘2\/5
137.5° or 137°30°28", is the angle that allows each leaf to be closest to the leaf
below it in the previous whorl and farthest from the youngest previous leaf, in
other words, it allows the leaf to get maximum sunlight.

times 360. This angle of

The second way to use the sunflower is to count the spirals of sunflower
seeds on the head of the plant. There are two sets of whorling seeds; the
number of these in each set varies upon the size of the sunflower, but each
number is a Fibonacci number (or close to it). We have gotten 55 and 89.
Counting these spiralling rows is tricky; we put small colored pins in each row,
then counted the pins. Since nothing in nature is perfect, the rows are difficult
to count. Whoever said counting is simple, obviously never tried to count
sunflower seeds or rows on a pineapple!
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(s7¢) 5 2 ()

4 (437)

(o3, 720)

An example of a plant whose leaves whorl at a angle of 144°.
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| have found bushes near the house which have a 3, 8 arrangement of leaves.
It took me quite a long time, a year or two, struggling to find these leaf
arrangements- like everything else, it takes persistence!

One of the more common methods of getting the golden mean or golden
section is to cut a line segment AB at point C such that the following
proportion works:

A cC B

the whole segment AB _ larger segment AC
larger segment AC smaller segment CB

If we call the larger segment x, the smaller segment, 1, and the whole
segment x + 1, then we get the equation
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X+ 1 X
=< o X¥=x+1orxx—x—-1=0
X 1
We can solve the X2 = x + 1 version with infinite continued fractions as in

CHAPTER 8. Barb and Jenny used the quadratic formula below.

Barbara and Jenny, both
9th graders,both long-
timers in The Math
Program, started with a
regular pentagon, drew
its diagonals, then
figured out all the
angles in the figure

on the right.
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They figured out that there are only 3 different angles in the figure 36°, 72° (2
x 36) and 108° (3 x 36). We found 2072 — ¢ — 1.6; SN 108" _ )

sin 36° "7 sin 36°

d S;?n17°;° = 1. Triangle GCH, the 36°-72°-72° triangle is a golden triangle,
because <& = CH _ 16 = ¢ from measuring the lengths. Triangle HBC is
GH GH 9

similar to triangle GCH and also a golden triangle. Therefore the following
proportion must be true? = % and ¢? = ¢ + 1. ¢ + 1is also the length

of the side of the pentagon. Triangle GCH is similar to triangle DAC, so the
following proportion is true:

b 20 +1 _ 2¢p+1

T e+ 1 g2
¢* =3¢ + 2and ¢> = 5¢ + 3. They came out with the quadratic equation
¢ — ¢ — 1 = 0, from the one above and solved it with the quadratic formula:

and ¢® = 2¢ + 1. Using larger triangles they found

-b + Vb? — 4ac
X =————witha=1,b="1andc = ~1
2a
¢, = ! +2\/g and ¢, = ! 72\/5. They realized that ¢, * ¢, = ~1 and
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The golden spiral came out as shown below.
They also saw a pattern in the powers

of ¢ and wrote a program

to print it out:

¢5=5¢ + -8
¢t ="3¢+5
¢ =2-¢+ -3
d2="1-¢+2
¢ =1-¢ + 1
¢ =0-¢ + 1
¢ =1-¢+0
¢ =1-¢ + 1
¢ =2-¢ + 1
¢ =3-¢+2
¢ =5-¢+3
¢ =8-¢+5

... AND YOU SHALL MEET A HORRIBLE FATE . . . YOU SHALL SPEND
ALL ETERNITY FINDING POWERS OF PHI . . .
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CHAPTER 8: Solving Equations/Infinite Continued Fractions

Let’s change the improper fraction % into a finite continued fraction.

g—1+—9——1+1—1+ !
28 28 8 5,1
9 °

This is as far as we can go (until, when we divide the last reciprocal, the
remainder is 0, % = 9 remainder 0). Change this to a continued fraction: ?—2.

Change the following continued fraction to an improper fraction:

We'll be using infinite continued 1+ ]
fractions in the rest of this 2 +
chapter because we will be 1+1
representing irrational or 7
transcendental numbers.

How many ways can you solve this quadratic equation x2 — 5x + 6 = 07?
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My first interest in infinite continued fractions came from looking at different
methods to solve quadratic equations. I'm up to about 12 ways to do that now,
seven of which are shown below. Then | found | could write \/2, the golden
mean (¢) and 7 as infinite continued fractions. Also, there are so many
patterns within them. The infinite continued fraction gives one the ability to find
an infinite sequence of approximations that converges and we can program a
computer to do this.

METHOD 1 to solve a quadratic equation:

Solve X —5x+6=0 add 5x and ~6
X2 =5x -6 divide by x
6
Eqg.1 =5—--
q Xx=25 x

Now comes the interesting part. Since a name for xis 5 — g, that’s what the

Eq.1 above says, we can substitute 5 — g in for x, on the right side. We get
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Eqg. 2

Eqg. 3

Eq. 4

and then just continue that
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This is an infinite continued fraction, unusual, interesting. There are a couple
of ways to work with these. One way is to guess a number for x say 1, putitin
for x on the right side in Eq.1., get an answer —1, this will be the first
approximation. Then put the same guess, 1, in the right side of Eq.2, which
gives the second approximation, and so on. This gives an infinite sequence of
rational numbers (out to 3 decimal places and 4 after a while) —1, 11, 4.455,
3.653, 3.358, 3.213, 3.133, 3.085, 3.055, 3.036, 3.024, 3.016, 3.010, 3.007,
3.005, 3.003, 3.002, 3.001, 3.0009, 3.0006, 3.0004, and it gets closer and
closer to 3.

The other way to look at these, and a simpler way, is to just use Eq.1. Put the
guess number, 1, in for x on the right side. Then take the answer, =1, putitin
for x on the right side in Eq.1 again. The answer is 11. Keep doing that and we
obtain the same sequence as we did above. We can write a simple computer
program to do this in basic (to get 20 terms): 10 N = 0; 20 input x; 30 x =

5 - g; 40 PRINT x; 50N = N + 1;60 IF N < 20 THEN GOTO 30;
70 STOR,
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The program for the FX7000G is: ? — x: Lbl 56:5 — g—> x4 Goto 5.

If you graph the guess number X,
vs. the number the sequence
goes to, its limit, it is very oy Omma O
interesting. Notice on the graph ¥
2 goes directly to 2 and 3 goes %L 1 3
&
3
by

\ ]

directly to 3. An infinite number
of guess numbers you try will
form a sequence that goes to 3.
But this graph is wrong. We

B B

53 no.
found not only 0 (shown), but g, vz e

% and an infinite number of
numbers (obtained by putting 0
then g etc. in the left side),

make it blow up, because eventually you get 0 in the denominator.
So there are an infinite number of holes missing on the graph.
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METHOD 2: GRAPHy = 5 — g, choose a guess number, say 1 for x (as in

method 1 above), then show the infinite sequence approaching 3 as it moves
along the curve. The points are pairs of consecutive numbers in that sequence
(1,71), (C1,11), (11,4.45), . ..

J\L}

(9)(3453,3359)

Q ® (11, witszd
N 7 Ca.us53,053)
B®(s.359, 3.213)
+ > X
OF< start at e
(1,1
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METHOD 3: GRAPHY = 5 —

. .
and

theny = 5 —
X
6
y=>5- 5
-
5 —
X
We get 3 hyperbolas and

much to our amazement they
intersect at the points

(2,2) and (3,3), the two
solutions of our quadratic
equation x2 — 5x + 6 = 0!
In the graph at the right

8
X

you only see one piece of each hyperbola, and only the section where they

intersect.

The nice thing about all this is that something new is happening all the time—if
you are willing to let it, willing to learn new things and willing to say you don't
know everything. As Sr. Jacqueline, at that time president of Webster College
said, “we have to learn to be secure in our insecurities”.
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METHOD 4: Let's try the same equation again, this time solving it a different
way: :
X2 — 5x + 6 = 0;add 5x — 5x = x2 + 6; divide by 5

_ X +6

Eq.5 X = 5 We can now do a similar thing as we
did above, put the whole i"‘«
right side in for x on the '
right side. OR, we’ll just i L3 *

write a program to put in

a guess number for x, do
the calculation, then put

the new approximation back
in for x again in Eq.5. The R P S A
graph of this solution is
shown at the right.

Again some interesting things happen. For 3 or =3 it goes
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directly to 3. For any guess number whose absolute value is >3 we geta
diverging sequence. For any guess whose absolute value is <3 we get an
infinite sequence which converges to 2.

METHOD 5: X2 —5x +6=0 add —6, factor left side

X(x — 5) =76 + (x = 5)
-6 , e
Eq.6 X = — Here’s another infinite
cont'd fraction. The incorrect graph ¢
is at the right. 3 goes directly s ¢
to 3. For an infinite number of §§‘ o >
guess numbers we get infinite r
sequences that converge to 2. Pt
But for x = 5 (shown), =2, & s
5’19 j 3 4 &
7M¢55 no.

and an infinite number of numbers
(obtained by putting 5, then 1—;—’, etc in the left side) the denominator is 0 and

there is no solution (holes not shown).
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METHOD 6: X -5x+6=0 add 5x and —6
X2 =5x —6 take V' of both sides
Eq.7 X = V5x — 6 This is different. It is not

an infinite continued fraction, but an infinite continued radical
something like lan had (see Chapter 3).

The method is the same as above;

just put the radical in for x on g xu

the right side. The graph of this

is at the right, using just the SD 3 Ol
positive radicals. Every guess number ::_ 2 ®

less than 2 goes imaginary. 2 goes ‘: f

directly to 2, and all guesses >2 3

goto 3. = 0 x
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METHOD 7: Jeff, a 5th-grader, knew the roots of the equation x2 — 5x + 6 =
0 were 3 and 2 very quickly, because 3 + 2 = 5and3 x 2 = 6. He
remembered having done that on Plato last year (Jerry and | did that work 12
years ago on Plato, the computer-based education project, directed by Don
Bitzer at the U of ). He also got the roots of x> — 25x + 24 = 0,24 and 1,
right away. | decided he needed a hard one, so I gave himx? — x — 1 = 0. He
tried 1 which gave —1 for the left side and of course, not equal to 0. At this
point he reached for a calculator and started using decimals, like 1.5 and 1.6.
Jeff got a sequence of numbers too big and too small. He ended up with
1.618034 to give him 0. He thought about this, then said “| suppose there must
be another number.” | thought that was great and told him so. He thought
about what the other number should be and said it should be —.618034 . He
figured that the coefficient of x was —1, so he subtracted 1 from 1.618034 and
made it negative. And of course he was right. | then told him that this number
was the Golden Mean and how the ancient Greeks used that ratio to build the
Parthenon.
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We got the Infinite continued fraction for ¢ from the equation x2 — x — 1 = 0.
We added x and 1 to both
to getx2 = x + 1. Then divided \

byxtogetx = 1 + )1-( We . /

1. -d-‘_P‘ ‘-
thenput 1 + ~in for x on the /ﬂ- /

right side of the equation 4
and continued this process. /
!

On the way we graphed (at the
right),y = 1 + )1( b / £

y=1+ — \//

s o
1 |
T A
/4'.‘ \

t

andy = x . These two
hyperbolas and the straight
line, all intersect at the

two points (1.618, 1.618) and (—.618, —.618) which are the two solutions of the
equationx® — x — 1 = O and are ¢ and ¢’ (see chapter 7). This graphing of
the “pieces” of the infinite continued fraction again was very exciting!
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The infinite continued fraction for ¢ is
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One of the most interesting ideas came up when | was working with Sean, 8
years old at the time. | made up this equation off the top of my head. He
solved it like this:

6x +5=2x + 25 add =5
6x = 2x + 20 +6 (unexpected)
2x + 2
X = X 0anqu.8x=%x+3%

He then said since x = %x + gx, then gx = 3% and multiplying both sides

by g he got x = 5. Terrific. | then looked at Eq.8 and saw the x's on both sides

and thought, hmmmm, could we do this like the quadratics above. |
encouraged Sean to put the right side of Eq. 8 in for x on the right side.
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And sure enough we ended up with an infinite series:
" RTAA ALY A
= |- . + 3-- — — . —
X <3) Xt 3 [(3) " (3) et (3) J

as n approaches infinity <%> goes to 0; Sean said “almost 0”. Then

x =3 [1 + (1—>‘ + (1)2 + (1)3 + } From solving equation 8 the
3 3 3 3 r
other way Sean knew thatx = 3% 2 =5
1 2 3
so[1+<1) +(1> +<l> +...]=§=1l
3 3 3 2 2

oy 4

74



So we arrived at the sum of an infinite series from solving a linear equation! A
program for Eq.8 on the FX7000G would be:? —X 4 Lbl 712 + %J — X4 Goto

7. Putin 17 for X and we get the following infinite sequence which seems to
converge to 5 (not surprising): 17,9, 6.333 .. .,5.444 ... /5148 . . .,
5.049...,5.016...,5.005. ..

Will this method work on all linear equations?

¥,
1
‘ gog (3067 OV
. S
1 i (5,5
If we now graph y = 'x + 3! A !
3 3 T gz gx 34
=
=4 MLx ¢33 31-
11 1 1 =
= > + 3—) + 3-and AR IC LA A
3\3 3 3 2

111 1 1 1 o o>
V‘5(5(5X+35)+35)+35 e 1 2 3 &« s &

we get 3 straight lines that intersect at—yes, (5,5)! and 5 is the solution to
X = %x + 3%. So what happened with the quadratic equations also works for
linear equations.
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An infinite continued fraction
for 3, by Lord Brouncker,

m
about 1658— see Olds:

76

An infinite continued fraction
for e (see chapter 11), by
Euler, 1737- see Olds:




CHAPTER 9: The Binomial Expansion and Infinite Series

Sean was 8 years-old when | asked him to do (A + B)2. | showed him a
square and asked him to find the area of each piece.

He cameupwithAA + A-B + B-A +
A B B-BorA®+ 2-A-B + B2

When he started on (A + B)® he very quickly decided that it would just be all

the ways he could put 2 different things together using 3 at a time. We have a

3-D model he could also look at. He wrote:
A+BP=A-A-A+A-A-B+A-B-A+B-A-A+

A-B-B+B-A-B+B-B-A+B-B-B
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or A® + 3-A2B + 3-A- B2 + B2 From his method he could go on from there
without any problem.

(A + B = 1

(A+B'=A+B

(A+Bp=A+2-A-B+ B

(A+Bj = A +3-A-B+3-A-B+ B
(A+B)'=A*+4-A°-B+6-A-B+4-A-B + B

With others, we talked about the distributive property to multiply two binomials,
then multiplying a binomial by a trinomial to get the same results as above.

Then we try to find some patterns. What do you see about the exponents?
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We'll write just the coefficients in this form:

Row # Column #
0 1 2 3 4 5 6
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Now the question again, can you find some patterns in this triangle of
numbers. This is sometimes called Pascal’s Triangle (after Blaise Pascal
1632-1662, but known by Indian and Chinese thinkers 2000 years before) or
Sean’s or lan’s triangle). There are all kinds of patterns. STOP HERE TO
TAKE A LOOK.
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For about 35 years my students and | looked at these numbers and we found
patterns in them, but what lan did was something special (the very same lan
from Chapter 3). lan did this when he was 12 years-old. Newton did a similar
thing when he was 19, according to W. W. Sawyer in “Integrated Mathematics
Scheme-Book C”. lan’s words:

“I was faced with the problem of generating Pascal’s triangle. | decided to start
looking at patterns until | found one that applied to the entire triangle. After
some trial and error, | noticed a pattern in the ratios from one column to the
next. In row 4, for example, the ratios are arrived at by asking,
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whattimes 1 = 4? ?. What times 4 = 6?
these ratios
4 3 2
1 2 3
4-0 4-1 4-2
1 2 3

So to get the third number in the 4th row, | multiply

4-04-1 43 _

1
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To get the 8th number in the 20th row:

20-0 20-1 20 -2 20—320—420—5‘20—6
1 2 3 4 "T85 % 7
y!

y —xt

x!

= 77520

The number in the x-th column, y-th row =

[N. B. lan changed from number in the row to column number. Since the
columns start with the 0-th column, his x is one less than the number in the
row, for example the 3rd number is in the 2nd column]. lan’s notation is the
same as used to write the coefficients in combination form, to which Sean
alluded to. lan also introduced the factorial notation (3! = 1-2-3 = 6).
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At this time lan also worked on extending the triangle to the left with negative
numbers. A couple of years earlier when he was in about 4th grade, lan was
graphing factorials, when he decided since these numbers got so big so fast,
he graphed the log of the factorial. | wasn’t even aware he knew about logs.

To write the general term of the binomial expansion, (A + B)", we will need
lan’s number for each coefficient and the exponents for A and B. The
exponent of B is the same as x, and since the exponents add up to n, the

exponent of Ais n — x. The general term in the x-th column and the n-th row
is:

n!

—  Ar-xBx
(n — x)x! A
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The first five terms of the binomial expansion calculated from the general term r~
with x going from 0 to 4, would look like this:
nin — 1
(A +B)=A"+nA""B + nn — 1)
1-2
nin — 1)(n = 2)(n — 3)
1-2-3-4

One thing that made this work so worthwhile, was the connection | saw
between the infinite series and the binomial expansion.

nn — 1)(n — 2)
1:-2-3

An—2BZ + An—SBs

+ AniBt 4 L
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In Chapter 3, lan came up with the sum of the infinite series:
1

1 —

=1+ Xx+x+x+x*+...

(as Sean did also, but from his work in chapter 8). From chapter 1 came this
infinite series

s h -
B-A B \B B
If we put A = Bx org = x in the equation above, we get

Bx
B — Bx

=X + X2 + x® + ... reducing the left side
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=X+ X+ x4+ ..
1-x

adding 1 to both sides—on the left side the 1 = :;_’; gives

X 1 —-x 1
= =T +x+x+x+...
1-x 1 -x 1 -x

which is the infinite series lan came up. Since
1
1-x

=(1=-x"=1+x+x+x+...

This is the important connection between the binomial expansion and the
infinite series, because (1 — x)™' can be expanded by putting 1 — A, ~x —
Band =1 — nin (A + B)"

86



CHAPTER 10: 7 and Square Roots

1. Kholer, a 5th grader at the time, worked on drawing inscribed polygons in a
12-dot circle. He found the perimeter of the polygons, then divided this by the
diameter of the circle. His numbers (only 3) formed a sequence, which got
closer to 7. This was similar to what Archimedes did.

KohleYr”
);\uvw*e"-) &
A\
-4 Urler2 2
£ 3
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If N = # of sides of the polygon (3, 6, 12, 24, .. . ) and F goes from 0 — «, a
program for the Casio FX7000G to get the ratio g = ¥, that Kholer was doing
is:

0—F:Lbl4:3-2F > N:N- sin(%’) — X.4 ISZ F: Goto 4. The infinite

sequence we get is 2.59807, 3, 3.1058, 3.1326, 3.1393, . . . and after 10 loops

we get 3.14159 . . . correct to 5 decimal places for 7. Notice the first 3 are very
much what Kholer had.
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2. Sean was reading “The History of Pi” and found the Gregory-Leibnitz series
7_7 = 1 — 1 + l — 1 + 1 —
4 3 5 7 9 7

Sean wrote a program to do this, and found the series converges slowly.

3. Wells: “Tamura and Kanada calculate 7 to 16 million places, based on
Gauss’ study of arithmetic-geometric mean of two numbers. The initial values

are,A=X=1B = L andC = %. The program steps follow:

V2
A
v=ma=2"SB-vEVic-Ccox- -V
A 2
X = 2 X; PRINT (—4+-oi); go back to first step.

It has the amazing property that the number of correct digits approximately
doubles with each circuit of the loop”.

From “The Penguin Dictionary of Curious and Interesting Numbers™ by David Wells;
copyright David Wells, 1986; pp. 54, 55 and was reproduced by permission of Penguin
Books, Ltd., Harmondsworth, Middlesex, England.
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4. One day one of my students, in a moment of trying to do nothing, started to
continuously hit the /" of a number on the calculator. He took \/5, then
V" of the first answer, etc. Lo and behold he came up with an infinite
sequence of numbers whose limit is 1. Try it! Will this work for any number?
Try .5. Briggs in 1620 used successive square roots of 10 to calculate
logarithms, so this turns out to be important.

5. To find \/2 by squaring numbers to nearest whole number, tenth,
hundredth, ... We get two infinite sequences, one made up of the smallest
numbers that are too big, the other made up of the biggest numbers that are
too small.

Toobig: 2,1.5,1.42, 1.415,1.4143, 1.41422, 1.414214, . . .
Too small: 1, 1.4, 1.41, 1.414, 1.4142, 1.41420, 1.414213, . ..

Both sequences approach \/2 as a limit.
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6. Find the \/40 by averaging: We're trying to find two numbers the same,
which when multiplied give 40. Suppose we guess 5. If 5 is too small, then

115—0 = 8is too big. And the \/40 must lie between 5 and 8. So we take the

average of 5 and 4—50 and use that as the new guess number and continue to do

this obtaining an infinite sequence approaching \/40. To generalize, if G is our
guess number, N is the number whose square root we are trying to find, then
Gayla’s (a 6th-grader) program to find the first 20 approximations for \/N

would look like this:

10C=0

20 INPUT N
30 INPUT G
40 PRINT G

E+G

50G =
2

60C=C +1

70 PRINT G

80 IF C < 19 THEN GOTO 50
90 STOP

(The approximatations to \/40 are 5, 6.5,
6.326924, 6.324556, . . . converging very
quickly).
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7. Find \/2 using the binomial expansion:
lan’s proof earlier (chapter 3), that infinity = =1 shows thatin (1 — x)", ifnis

negative or a fraction, x has to be less than 1, otherwise strange things
happen.

1 ut il
V2 =22 = <%>2 = (1 - %)2 now it's in the binomial form, (A + B)"; if we

put 1into A, % in for B and % inforn.

R R E R R
(%)(%‘1)'1%_2.<—1)2+

SR

V2 =1+ .25 + .09375 + .0390625
+ .017089844 + .007690430 + ...

V2 = 1.407592774 . . . using 6 terms as an approximation of this infinite
series.
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CHAPTER 11: Compound Interest to e

At one point, when lan was 11 years old, he came in asking how much would
his father have to pay in monthly installments on a house worth $10,000 at
10% interest over 30 years. This was a problem similar to one which one of my
parents asked me to figure out for his accounting firm a whiie before. This got
us working on this and the simpler problem of finding the interest if it
compounded, that is, added to what you put in the bank.

Let’s look at the problem of finding simple interest first. Suppose you put $1 in
the bank at a 7% annual rate of interest. How much would you have after 1
year?

The Simple Interest = Principal - rate - time(in years)

Int. = $1-.07-1 = $.07 for 1 year. So you would have $1.07 after one
year. After 2 years you would get interest of | = 1:.07-2 = $.14 . After 2
years then, you would have $1.14. After 3 years you would have $1.21.
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So the interest is not added on when you figure the next interest, but always
figured on $1.

Let’s figure out what you would have in the bank after 3 years, putting in $1, at
7% interest, if the interest is compounded annually:

Int. (earned first year) = $1-.07 -1 = $.07 (same as simple interest)
Amount you have after 1 year = 1 + .07 = $1.07, but we'll leave it in the form
1 + .07, also the same as simple interest.

Int. (earned 2nd yr) = (1 + .07)-.07-1 = (1 + .07)-.07 = .0749 which is
more than for the simple interest case.

Am't (after 2nd yr) = Am't. end of 1styr. + Int. during 2nd yr.

Am't (after2nd yr) = (1 + .07) + (1 + .07)-.07

Am'’t (after2nd yr) = 1 + .07 + .07 + .072

Am't (after 2nd yr) = (1 + .07)? = 1.1449, just a little more than the simple

interest case.

Notice also, we have a binomial expansion problem (A + B)2.
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Let’s go on one more year.

Int. Brdyr) = (1 + .07)2-.07 - 1

Am’t (3 yrs) = Am't. after 2 years + Int. during 3rd yr.

(line 1) Amt(3yrs) = (1 + .07)2 + (1 + .07)2- .07 =

Amt(3yrs) =1+ 2-.07 + .072 + .07 + 2-.072 + .07° =
Am't(3yrs) =1+ 3-.07 + 3-.072 + .07° = (1 + .07)® = $1.225

Inline 1, just factor out (1 + .07)2to get (1 + .07)® = $1.225

which is more than the $1.21 in simple interest. And after 10 years the amount
you would have is (1 + .07)"° = 1.96. which means at 7% interest
compounded annually you would double your money in a little over 10 years. If
you put $3 in the bank at 7% for 10 years, compounded annually, you would
have 3- (1 + .07)" = 3-$1.96. In general, if A = the amount you have in the
bank after t years, and X = the annual rate of interest, compounded annually,
then

A=P-(1+X)
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| set the next sequence of problems to Sean, at age 9, and a couple of
teachers at a Ul workshop:

What if we compound the interest semi-annually or twice a year? Would that
make a big difference in the amount we have after 1 year? Let’s try the same
annual rate of interest 7%, on $1 again.

Int. (ﬁrst% yr) = $1-.07

107
2 2

(3 % cents)

1 _ .07
A(endofayr) =1+ >

1 B AW |
Int. (secondEyr) = (1 + -2—> .07 >

't (after 2 - 07 o7\ o7
Amt(afterEyroMyr)_ (1 + 2) +<1 + 2) s

2
Am't (aﬂerg yror1yr) = (1 + %) = 1.071225, which is a little more than
when compounded annually.

What if we compounded the interest monthly (12 times per year), same $1 at
the same 7% for 1 year? It would just be

12 .07\
Am't (aﬂerﬁ yror1yr) = (1 + %) = 1.072290081
96



Compounded daily (365 times per year)?

365 .07>365
’ —_— = —_— = 1.072
Am't (after 365 yror 1yr) (1 + 365 072500983

Compounded 1 million times per year?

07\™
Am't (after 1 yr) = (1 + m) = 1.072508179. ..

This looks like an infinite sequence

1, 2, .. 12, .. 365, .. 1,000,000

1.07, 1.071225, .., 1.072290081, .., 1.072500983, .. 1.072508179 ...

So . .. no matter how many times the interest is compounded per year, the
amount you have after 1 year, at a 7% annual interest rate, will never be
bigger than $1.08 to the nearest cent!

This number (1 + ‘0—7> as n goes to infinity equals e = 1.072508181 . ..

n
and we could write the rule A = P - e, the amount you would have at
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the end of t years, at x annual rate of interest, compounded continuously.

If we expand (1 + %) using the binomial expansion we get the infinite

series:

.07\" . -1 .07\2
<1+_) :1n+n.1nl.g+&.—).1n2.<_> +
n n n

2!
— — 3
- D02 (DY
3! n
Simplifying, 1 to any power is 1 and just switching the factorials and
powers of n
.07\ - .072
<1+0—):1+.07+M-0—+
n n? 2!
nin — 1)(n — 2) .07° nin — 1)(n — 2)(n — 3) .07
e 3 e ar

Since all the coefficients with nin them goto 1 as n — =,
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thelimitof(1 +'°—7) ,asn— o =1+ 07 + — 0—73 +E + o7

n 3! 4! 5!
.. = e% = 1.072508181 . ..

- 1\" 1 1 1 1
Thehmltof<1 +;) asn——>oc_e_1+1+§!+§!+4_!+§!+_“_
2.718281828 . . .(not rational, but transcendental, like #); lan had this figured
out at age 12.

And the limit of (1 + E) ,as n— «, = ¢ and as an infinite series

generalizing from above, by Sean and the teachers in 1987 and by Newton in
1669:
2 X3 X4

=1+ X+ 5 + 5 + E + .
e is a very important number in mathematics; not only does it show up in this
compound interest problem, but as the base of the natural logarithms as well
as in exponential growth and decay and can be written in terms of sines and
cosines.
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I'd like to take a jump here, because what follows really was one of the
highlights of my college math. | was so excited about this result, | painted a
picture showing it. Five of the most important numbers in mathematics come
together in one true statement! This will give you something to think about for
a long while, as it did me.

In the following, i represents \/~1, the imaginary number such thati-i = i2 =
“t1,andi =i, theni® = =i, i* = 1,i® =i, i = —1, etc. In place of x in the
series for e above we'll put ia, a being a number in radians, and we get
o, @ (ap (@) (a)
e—1+|a+?+?+4! 51
e'a=1+ia—a—zfia—3+a—4+ia—5 a
2l 3 4 5 @l

Separating the real parts from the imaginary parts,

a? at ad . ad a®
ia = —_—— — — — . — — —_— —
e 1 2!+4! 6!+...+1(a 3!+5! .l
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According to Griffiths, Newton did not show how he figured out the infinite
series for cosine and sine, but he did this:

a? a* af
+ —-=—+ ...and

cosa:1—5 TR

33 aS a7
35T

It was Cotes by 1716 who discovered that:

sina =a —

2 = cosa +i-sina

If we now put 7 radians in for a above, we get e~ = cosw + i - sinw. Since
coswm = ~1andsin7 = 0, we arrive ate™ = —1 + 0. Adding 1 to both sides we
get the amazing result

| e"+1=0

This is the true statement that has the five most important numbers in
mathematics init: e, i, 7, 1 and 0 . Wow!
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“In his first paper on the Calculus (1669), Newton proudly introduced the use
of infinite series to expedite the processes of the calculus . . .

As Newton, Leibnitz, the several Bernoullis, Euler, d’Alembert, Lagrange, and
other 18th-century men struggled with the strange problem of infinite series
and employed them in analysis, they perpetuated all sorts of blunders, made
false proofs, and drew incorrect conclusions; they even gave arguments that
now with hindsight we are obliged to call ludicrous.”

From Mathematics: The Loss of Certainty by Morris Kline. Copyright

©1980 by Morris Kline. Reprinted by permission of Oxford University
Press, Inc.
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CHAPTER 12: The Two Prob'lems of the Calculus

1. The derivative, or “rate of change”, is used to describe how quickly
quantities change. Historically, it helped deal with problems of how a
pendulum swings, how the planets move in their orbits, the velocity of a
cannon ball, light, and electrons in a wire; and 2. the integral, which turns out
to be just the inverse of the derivative, historically dealt with finding the area
under curves, the volume of fairly regular shapes, the work done in moving
objects and the energy in light scattering.

Both problems involve infinite sequences and their limits. The derivative deals
with an infinite sequence of slopes of lines, the integral deals with an infinite
sequence of areas under a curve (which in turn involves an infinite series).

Archimedes (287-212 B. C.) essentially invented the integral calculus. We'll
start there and do it in different ways.
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CHAPTER 13: Area Under Curves—The Integral

1. ARCHIMEDES found the area within a parabolic segment shown in Fig. 1—
the area enclosed by the parabola y = x2 and the horizontal line segment:

Fig. 1
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Figure 2 shows a triangle of the same base and height as the parabolic
segment. Archimedes proved that the area of the parabolic segment is % the

area of this triangle, say T.

Fig. 2
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Figure 3. Archimedes built two smaller triangles between the big triangle and
the parabola by constructing a perpendicular to AJ at its mid-point H,
intersecting the parabola at a point, call it F. He then showed that the area of

the 2 smaller triangles combined, is 2—1 of T.

'3 SR

Fig. 3
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Figure 4 shows how he then builds 4 smaller triangles, whose combined area

isloflofT.
4 4

1
\
P37 SEpp -



Archimedes continues this process.

The area of the parabolic segment =
1 1\2 1\3
=T+ (=T + (= —)T+...
(4) <4> T (4
1 1\2 1\2
T+T-|=-+|=) + —>+...].
[4 (4) (4

From chapter 1, the infinite series in the brackets converges, with limit %

So the area of the parabolic segment = T + —- T = g- T.

@l

At the time of Archimedes they didn’t accept the idea of infinite nor did he use
the idea of limit, but instead showed that the area couldn’t be bigger than % -T

and it couldn’t be smaller than % - T so it had to equal ‘—; - T.
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Using figure 5, | show my version of why the area of the 2 smaller triangles =
i - T by showing that the area of triangle ACF is j—‘ the area of triangle

ACB. The proof uses the idea that if
two triangles have the same base,
their areas are proportional to their

altitudes. From figure 3., HF is
extended up to intersect AC, ata
point we call E. AC is a base of

triangle ABC and triangle ACF. BG

and FD are their corresponding

altitudes. Triangle DEF is similar to

triangle GAB because they each

have two angles equal, the dot angle

(because EFH is parallel to AB) and

the right angle.
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EF = }1 - AB because EF is % of EH which is % of AB. Then DF = 12 -GBand

the area of triangié ACF = % the area of triangle ACB.

The integral is just the area under the curve, which we'll find now. Archimedes

showed that the area of the parabolic segment is % - T. In figure 5 above then,

win

the area of % the parabolic segment = - T. Tis also the area of

14
23
the rectangle AJCB. Therefore, the area below the parabola = % -T.IfAJ

goes from 0 to m with length m, then JC goes from 0 to m? and has length m2.
Another name for the area of the rectangle AUCB ism - m? = m®.

So the area under the parabolay = x2fromOtom = % - m°. Another way to

say this is that the integral of x2 from 0 to m, is % - m?.
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2. PLOTTING POINTS (USING THE CASIO FX7000G), TO FIND THE AREA
UNDER CURVES:

| was browsing through a Scientific American “Computer Recreations” article
in which it looked like they were filling in squares on a computer screen. |
asked myself “Could | do that on our Casio FX7000G programmable graphics
calculator?”. After a couple of hours

of trying things and making mistakes 190

(I was never good at programming), | } 4

was able to plot points on the screen

to make a square. | plotted the point

(0,1), subtracted a little from the y-

coordinate then plotted another point,

until the y-coordinate went to zero. )

Then | added a little to the x-

coordinate, and again plotted points

fromy = 1 to zero and so on until x

= 1,to make a 1 by 1 square.
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The next question | asked myself was “Could | find the area of the figure?”. If |
counted the points, that would give me a measure of the area. The program
ended up looking like this (there are no line numbers needed but they are
numbered for reference later):

1) Range-2.35,2.35,1, —1.55,1.55, 1

0—x
0—N
Lbl 3
1—=y
Lbl 4

Plot x,y
1+ N—>N

O~NO S N
RN AN s

(The range puts in my x min, x max, x scale, y min, y
max, y scale. The 2.35 to 1.55 ratio is used to make
a square grid on a rectangular screen of a 95 X 63-
dot display)

(sets the left side of the figure).

(N keeps count of the number of points plotted)
(place to which Goto 3 returns)

(sets the top of the figure)

(place to which Goto 4 returns)

(plots the point)

(adds 1 to the counter)
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9) y—-.07—>y (I had to play around to get .07. If this number is too
big all the spaces would not be filled in; if it was too
small the number of points plotted wouldn’t be a
minimum.)
10) y> 0= Goto 4 (Sets the bottom of the figure. If y > 0 it jumps to Lbl
4, otherwise goes to step 11)

11) x4+ .07—x (moves the plotting to the right)
12) x<1=>>Goto3 (sets the right end of the figure)
13) “N="Nd (Displays the number of points; hitting the G < T

key shows the picture)

Running the program above fillsina 1 x 1 square; the number of dots is 400.
If a2 is used instead of 1 in line 12, | would geta 1 x 2 rectangle. The number
of dots is 800, so the area of the 1 x 2 rectangle i |s— = 2.

The hext question | asked was “Could | find the area under the
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curve y = x2from 0 to 1?”. Easy. Just replace the 1 in line 5 with x2, that's it!
We get the picture below:

and N = 133.

So the area under the curvey = x2from0to 1 is %

which is very close to % which is the integral of x?, from

0to 1. | was excited about this and showed it to many
people | work with, ages 6 to 45, as well as teachers,
principals and parents.

When | asked a couple of 6th graders what they would expect by just looking
at the picture above, one said less than % the 1 x 1 square, the other said 15 of

it. | was able to get the area under y = x3, within a circle, an ellipse, between
curves and under the normal distribution curve.
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Once | saw how simple this was, it gave me the impetus to get young people
thinking about the integral.

Now | asked “How could | do this without the calculator?”

—t

correctly from the picture on the B RBE RERS
calculator, about the area undery = x2 EERARES 4

O T T I
Sean, a gifted 8 year-old, guessed MALIRESaRRRES H 4
1
from 0 to 1 and the area from 0 to 2 T A AT

INEE AN SR

1
T

would be % - 8. Then upon my TR AT

I

suggestion, he proceeded to graph H H
y = x2on graph paper and actually /
counted the squares under the curve. y

it

1
T
I
I
7

I

We ended up using 11—0" graph paper for

this work on integrals.

)

Y

¢
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Matt, a 7-year-old, counted 32 squares, and % ofthe 1 x 1 square as the
area undery = x2from x = 0 to x = 1. | asked what simple fraction %
equals. To which he replied, % From 0 to 2 he correctly predicted % of the

2 x 22rectangle or% - 2%asthe areaundery = x2fromx = Otox = 2.

Sean counted an approximate 279 squares in going from 0 to 2, but was
satisfied this was close enough (see his figure below). He figured there are 20
-40 = 800 squares in the 2 X 4 rectangle (2 -4 = 8 square units), and the

area should be % of 800 or 266.666 . . . which is close to his 279. | don't like
the normal integral notation for this work with Sean and other young people. |
used this: A, , 1 (X?) =

11 .
373 12, This means, the area under the curve y =

x2fromx = 0tox = 1is % and we later used % of 12 because he saw the

pattern. Then Ay , , (X3) = =8 = --2%and Ay, s (X)) = =27 = - - 3

W=

1. 1.
3 3

and he wrote A, , , (X3) = = - x3. After he had done a similar thing for y =x2,

Ao x (X) = = - x* he generalized to A, , , (X") = -§1—1 Very exciting!
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As a teacher, | need to try new things, do mathematics and look for ways to
get my students into more difficult concepts, but at their level. | treat each
student as an individual; | do different things with different students. And |
don’t wait until | completely understand everything about an idea before I'll get
a student doing it—that way | learn new things along with my students. It's

also why | encourage them to do things different ways. It makes teaching
enjoyable.

Much of the above section on plotting points under the curve was printed in
the September 1987 issue of The lllinois Mathematics Teacher.
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4. THE RECTANGLE METHOD (THE STANDARD TEXTBOOK METHOD) OF
FINDING THE AREA <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>